Surname	Centre Number	Candidate Number
Other Names		0

GCSE

4370/06

SOLUTIONS

MATHEMATICS – LINEAR PAPER 2 HIGHER TIER

A.M. TUESDAY, 17 June 2014 2 hours

ADDITIONAL MATERIALS

A calculator will be required for this paper.

A ruler, a protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all the questions in the spaces provided.

If you run out of space, use the continuation page at the back of the booklet, taking care to number the question(s) correctly.

Take π as 3.14 or use the π button on your calculator.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded that assessment will take into account the quality of written communication (including mathematical communication) used in your answer to question 2(a).

For Ex	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	5	
2.	8	1
3.	16	
4.	5	
5.	6	•
6.	3 ,	
7.	4	
8.	8	
9.	4	
10.	6	
11.	6	
12.	7	
13.	6	
14.	7	
15.	9	,
Total	100	

1. (a) Draw a reflection of the triangle in the line y = 1.

[2]

(b) Enlarge the shape shown on the grid by a scale factor of 2, using A as the centre of the enlargement. [3]

0 3

370

The ruling body for international football has rules for the dimensions of rectangular football 2. pitches.

Diagram not drawn to scale

Football pitch dimension rules:

- the minimum width is 45 m
- the maximum width allowed is double the minimum width
- the maximum length is 120 m
- the minimum length allowed is three-quarters of the maximum length
- You will be assessed on the quality of your written communication in this part of the (a) question.

Susan says

'The maximum area of a pitch is at least 50% greater than the minimum area of a pitch.'

Is Susan correct?

You must show all your working to justify your answer.	
--	--

[6]

Max Width width

90m

	10
	C
0	C
-	C
3	4
*	

(b) Ceri mak	es a correct state	ment.			
Complete	e Ceri's statement	t below using a d	ecimal, correct to 2		[2]
'Minimun	n area of a footb	all pitch ×	67 = maximum	area of a football p	oitch.'
	10800	= 2.6	7		
	4050				
	•				
					The production of the producti
	15. ny - 21.				

	scow?	246	2.61	•[1]
363		246 00	246	
			365	
It is Wha July	warmest at would l was not	mperature in Moscow for in July, typically 26°C. be the estimate for the mincluded?	ean temperature in Mosc	ow if the temperature for [4]
	12 mon	ths mean =	4°C : Tom	L = 12 x 4 = 48°C
	Witha	et July TOTAL	of temps = 48	-26 = 22°C
		So Mean of re		
			9	
			= 22 = 3	X C
(c) One				
		re shown in the table belo	ow.	rded every day at midday.
		re shown in the table below Midday temperature, t, in °C		Mid Point
		re shown in the table below Midday temperature, t , in °C $-12 \le t < -10$	ow.	Mid Point
		re shown in the table below Midday temperature, t, in °C	Number of days	Mid Point
		re shown in the table below Midday temperature, t , in °C $-12 \le t < -10$ $-10 \le t < -8$	Number of days 1 3	Mid Point
		re shown in the table below Midday temperature, t , in °C $-12 \le t < -10$ $-10 \le t < -8$ $-8 \le t < -6$	Number of days 1 3 5	Mid Point
		re shown in the table belowed Midday temperature, t , in °C $-12 \le t < -10$ $-10 \le t < -8$ $-8 \le t < -6$ $-6 \le t < -4$	Number of days 1 3 5	Mid Point -11 -9 -7 -5
The	results a	re shown in the table below Midday temperature, t , in °C $-12 \le t < -10$ $-10 \le t < -8$ $-8 \le t < -6$ $-6 \le t < -4$ $-4 \le t < -2$ $-2 \le t < 0$	Number of days 1 3 5 8 4 10	Mid Point -11 -9 -7 -5 -3 -1
The	results a	Midday temperature, t, in °C $-12 \le t < -10$ $-10 \le t < -8$ $-8 \le t < -6$ $-6 \le t < -4$ $-4 \le t < -2$ $-2 \le t < 0$ estimate for the mean mice ow all your working.	Number of days 1 3 5 8 4 10 dday March temperature	Mid Point -11 -9 -7 -5 -3 -1 in Moscow. [4]
The	results a	Midday temperature, t, in °C $-12 \le t < -10$ $-10 \le t < -8$ $-8 \le t < -6$ $-6 \le t < -4$ $-4 \le t < -2$ $-2 \le t < 0$ estimate for the mean mice ow all your working.	Number of days 1 3 5 8 4 10 dday March temperature	Mid Point -11 -9 -7 -5 -3 -1 in Moscow. [4]
The	results a	Midday temperature, t, in °C $-12 \le t < -10$ $-10 \le t < -8$ $-8 \le t < -6$ $-6 \le t < -4$ $-4 \le t < -2$ $-2 \le t < 0$ estimate for the mean mice ow all your working.	Number of days 1 3 5 8 4 10 dday March temperature	Mid Point -11 -9 -7 -5 -3 -1
The	results a	Midday temperature, t, in °C $-12 \le t < -10$ $-10 \le t < -8$ $-8 \le t < -6$ $-6 \le t < -4$ $-4 \le t < -2$ $-2 \le t < 0$ estimate for the mean mice ow all your working.	Number of days 1 3 5 8 4 10 dday March temperature	Mid Point -11 -9 -7 -5 -3 -1 in Moscow. [4]
The	results a	Midday temperature, t, in °C $-12 \le t < -10$ $-10 \le t < -8$ $-8 \le t < -6$ $-6 \le t < -4$ $-4 \le t < -2$ $-2 \le t < 0$ estimate for the mean mice ow all your working.	Number of days 1 3 5 8 4 10 dday March temperature 1) + 3x(-9) + 5x	Mid Point -11 -9 -7 -5 -3 -1 in Moscow. [4]
The	results a	Midday temperature, t, in °C $-12 \le t < -10$ $-10 \le t < -8$ $-8 \le t < -6$ $-6 \le t < -4$ $-4 \le t < -2$ $-2 \le t < 0$ estimate for the mean mice ow all your working.	Number of days 1 3 5 8 4 10 dday March temperature 1	Mid Point -11 -9 -7 -5 -3 -1 in Moscow. [4]

(i) Each year, the value of Boris's car depreciates by 10% of its value at the start of the year.

At the end of two years, by how much has the value of Boris's car depreciated? [4]

Value after 2 years = 251850 x 0.9

Depreciates by 251 850 - 203998.5

= 47 851-50

Russian roubles

4370

(ii) The exchange rate for Russian roubles when Boris bought his car was £1 = 50.37 Russian roubles.

At the same time, Angharad bought a car in Wales. Angharad paid £5250 for her car.

How much more than Boris did Angharad spend on buying her car? Give your answer in pounds.

[3]

BORIS 251850 € \$ = 50.37 = £ 5000

ANOHARAD Spends \$250 more on her car

[2]

- **4.** The table shows some of the values of $y = x^3 + 6$ for values of x from -2 to 3.
 - (a) Complete the table by finding the value of y for x = -1 and x = 2.

x	-2	- 1	0	1	2	3
$y = x^3 + 6$	-2	5	6	7	14	33

x = -1 $y = (-1)^3 + 6$ y = -1 + 6y = 8 + 6y = 5y = 14

(b) On the graph paper below, draw the graph of $y = x^3 + 6$ for values of x from -2 to 3. [2]

(c) Faye wants to solve the equation $x^3 + 6 = 10$ by first drawing a line on the graph above. Show how Faye would do this on the graph above. You do not need to find the solution of the equation. [1]

curve line y=10

5. Claudia was given the following information.

UK Income Tax

April 2013 to April 2014

taxable income = gross income - personal allowance

- personal allowance is £9205
- basic rate of tax: 20% on the first £32255 of taxable income
- higher rate tax: 40% is payable on all taxable income over £32 255

During the tax year 2013 to 2014, Claudia's gross income was £52250.

Calculate the total amount of tax that Claudia should pay. You must show all your working.

[6]

4370

Taxable Income = 52250 - 9205 = £ 43045

20% tax paid on $\frac{1}{3}2,255 = 32.255 = 10$

20% TAX

tax paid on difference

above £32 255

ie 40% tax paid on 43045 - 32255 = \$10790

(TAX PAID = 10790 - 100 x 40) 40% = £4316

......

TOTAL TAX = 6450 + 4316= £10766

7. (a) Find the equation of the straight line shown in the following diagram. Write your answer in the form y = mx + c.

[2]

crosses y axis at +6

3 because

Equation of the straight line is y = 3 x + 6

(b) On the grid above, draw the straight line which has a gradient of -2 and which passes through the point (0, -1). [2]

ht = 2

heese

- sign means

8. A number of people took part in a challenge to swim across a lake. The grouped frequency diagram shows the times taken to cross the lake.

(a) How many people took between 5 minutes and 12 minutes 30 seconds to swim across the lake?

20 + 24 + 34 = 78

(b) Complete the cumulative frequency table for the swimming times.

[2]

Time, t in minutes	<i>t</i> ≤ 2·5	<i>t</i> ≤ 5	<i>t</i> ≤ 7·5	<i>t</i> ≤ 10	<i>t</i> ≤ 12·5	<i>t</i> ≤ 15	<i>t</i> ≤ 17·5
Cumulative frequency	0	5	25	49	83	1213	1.20

(c) Use the graph paper below to draw a cumulative frequency diagram for the swimming times. [2]

Cumulative frequency

(d) Use your cumulative frequency diagram to find

(i) an estimate for the median swimming time,

median = 60th Halt 10.5 mins

(ii) an estimate for the inter-quartile range of the swimming times.

UQ = 90th result = 13 mins

Examiner only

A sh	
it th	p leaves port A and sails for 6.2 miles on a bearing of 0.90° to a point B . In turns and sails on a bearing of 2.24° until it reaches point C , which is due south of
nort	Δ
Calc	ulate the distance between the point C and port A . [4]
	N N
	A
	A 6.2 miles
	224
	10 h
	$224 + 46$ $= 270^{\circ}$
	= 270
	C
	Diagram not drawn to scale
	lse DABC tan 46° = AC
	6-2
	6.2 ten 46° = AC
	6.42 miles = AC
	Q 40 miles = 710
	-
	-
	-

0. (a)	Factorise and hence solve $x^2 - 4x - 12 = 0$. $(x - b)(x + 2) = 0$ $(-b)$ $(+2)$ $x = 6$ $x = -2$	[3]
(b)	Write down the n th term for each of the following sequences. (i) $4, 9, 14, 19, 24, \dots$	[2]
	(ii) 2, 5, 10, 17, 26, 37, 50, +3 + 5 + 7 + 9 + 11 + 13 +2 + 2 + 2 + 2 + 2 + 2 and difference same 12 + 12 + 2 + 2 + 2 + 2 + 3 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4	[1]

- 11. The probability that Ifor buys a sandwich for lunch is 0.6.

 The probability that Ifor buys a sandwich and a drink for lunch is 0.18.

 Buying a sandwich for lunch and buying a drink for lunch are independent events.
 - (a) (i) Find the probability that Ifor buys a drink for lunch.

[2]

x = 0.18 = 18 = 3 = 0.3

Probability that Ifor buys a drink =

(ii) Complete the tree diagram.

[2]

(b) Find the probability that Ifor does not buy a sandwich and does not buy a drink at lunchtime. [2]

buy a drink

0.4 x 0.1

= 0.28

12. The diagram shows a parallelogram and a rectangle joined along a common side.

Diagram not drawn to scale

The width of the rectangle is x cm.

The length of the rectangle is (x + 3) cm. The height of the parallelogram is (2x + 3) cm. The total area of the parallelogram and the rectangle together is 70 cm^2 .

Show that $3x^2 + 12x - 61 = 0$. = x(2x+3) + (x+3)(2x+3)

Nav
$$3x^2 + 12x + 9 = 70$$

$$3x^2 + 12x - 61 = 0$$

Use the quadratic formula to calculate the length of the rectangle. Give your answer correct to 2 decimal places.

[4]

[3]

$$a = 3$$
 $b = 12$ $c = -6$

$$x = -b^{\pm} \sqrt{b^2 - 4ac}$$

$$x = -(12) \pm \sqrt{(12)^2 - 4(3)(-61)}$$

$$x = -\frac{12 \pm \sqrt{144 + 732}}{6} = -12 \pm \sqrt{876}$$

$$x = -12 \pm 29.597$$

Turn over.

13.

Diagram not drawn to scale

AOB is a sector of a circle, with OP perpendicular to AB and AM = MB. You are given that $AB = 20.8 \,\text{cm}$ and $MP = 1.5 \,\text{cm}$. Calculate the radius of the circle.

[6]

OM = $\Gamma - 1.5$ $h^2 = a^2 + b^2$ MB = 10.4 $\Gamma^2 = (\Gamma - 1.5)^2 + 10.4^2$ $\chi^2 = \chi^2 + a.a5 - 3\Gamma + 10.4^2$ $\chi^2 = \chi^2 + a.a5 - 3\Gamma + 10.4^2$ $\chi^2 = \chi^2 + a.a5 - 3\Gamma + 10.4^2$ $\chi^2 = \chi^2 + a.a5 - 3\Gamma + 10.4^2$ $\chi^2 = \chi^2 + a.a5 - 3\Gamma + 10.4^2$ $\chi^2 = \chi^2 + a.a5 - 3\Gamma + 10.4^2$ $\chi^2 = \chi^2 + a.a5 - 3\Gamma + 10.4^2$ $\chi^2 = \chi^2 + a.a5 - 3\Gamma + 10.4^2$ $\chi^2 = \chi^2 + a.a5 - 3\Gamma + 10.4^2$ $\chi^2 = \chi^2 + a.a5 - 3\Gamma + 10.4^2$ $\chi^2 = \chi^2 + a.a5 - 3\Gamma + 10.4^2$ $\chi^2 = \chi^2 + a.a5 - 3\Gamma + 10.4^2$ $\chi^2 = \chi^2 + a.a5 - 3\Gamma + 10.4^2$ $\chi^2 = \chi^2 + a.a5 - 3\Gamma + 10.4^2$

© WJEC CBAC Ltd.

15. Polly carried out an experiment.

She used equipment to record the velocity of an object, v, in m/min for the first 8 minutes of the experiment.

The velocity-time graph is shown below.

Velocity, v, in m/min

(a) Write down the gradient of the curve when t = 4.6.

[1]

m = 0

(flat line)

(b) Find an estimate for the acceleration of the object at t = 3.5.

[3]

Acc = gradient

gradient of targent

ht base

= 13

26

= 2.6 m/min2

(c) (i) Use the trapezium rule, with the ordinates t = 0, t = 2, t = 4, t = 6 and t = 8, to estimate the area of the region bounded by the curve, the positive time axis and the line t = 8.

Area = (1) + (2) + (3) + (4) = $\frac{bh}{2}$ + $\frac{(a+b)h}{2}$ + $\frac{(a+b)h}{2}$ + $\frac{(a+b)h}{2}$

 $= \left[\frac{2 \times 14}{2}\right] + \left[\frac{(14 + 29)^{2}}{2}\right] + \left[\frac{(29 + 26)^{2}}{2}\right] + \left[\frac{(26 + 36)^{2}}{2}\right]$

= 14 + 43 + 55 + 56

= 168 units²

(ii) Calculate an estimate for the distance the object travelled in the first 8 minutes of Polly's experiment, giving your answer in kilometres. [1]

Distance = area under graph ≈ 168 m

END OF PAPER