Discriminants and Roots of Quadratic Equations

- 1. Given that the equation $kx^2 4x + k 3 = 0$ has equal roots, find the values of k.
- 2. Given that the equation $kx^2 4x + (k 3) = 0$ has real roots, show that $k^2 3k 4 \le 0$ Find the range of k values that satisfy the inequality.
- 3. Show that the equation $x^2 + (2k + 1)x + (k^2 + k + 1) = 0$ has no real roots for any k value.
- 4. Find the range of values of k for which the quadratic equation $3x^2 + 2x k = 0$ has 2 distinct real roots.
- 5. Find the range of values of m for which the quadratic equation $3x^2 6x + m = 0$ has no real roots.
- 6. If the equation $(3k-2)x^2 + 8x + k = 0$ has no real roots, show that $3k^2 2k 16 > 0$ Find the range of k values that satisfy the inequality.
- 7. Given that $k \neq -1$, show that the quadratic equation $(k + 1) x^2 + 2kx + (k 1) = 0$ has two distinct real roots.
- 8. Find the range of values of k for which the quadratic equation $kx^2 + 3x 5 = 0$ has no real roots.
- 9. Find the range of values of k for which the quadratic equation $2x^2 + kx + 18 = 0$ has no real roots.
- 10. Given that the equation $2x^2 + (3k 1)x + (3k^2 1) = 0$ has two distinct real roots, show that $5k^2 + 2k 3 < 0$. Find the range of k values that satisfy the inequality.