| 18) | (a) | Write down the expansion of $(1 + x)^6$ in ascending powers of x up to and including in x^3 . | the term [2] | |----------|--|--|----------------------------| | | (b) | By substituting an appropriate value for x in your expansion in (a), find an appropriate value for 0.99^6 . Show all your working and give your answer correct to four places. | roximate
decimal
[3] | | | | | June 10 | | (9) | Use | Use the binomial theorem to express $(1+\sqrt{3})^5$ in the form $a+b\sqrt{3}$, where a, b are integers whose values are to be found. [5] | | | | | | Jan 11 | | 80 | (a) | Use the binomial theorem to expand $(3+2x)^4$, simplifying each term of the exp | pansion.
[4] | | | (b) In the binomial expansion of $\left(1+\frac{x}{4}\right)^n$, the coefficient of x^2 is five times the coefficient | | fficient | | | | of x .
Given that n is a positive integer, find the value of n . | [4] | | | | | June 11 | | 81) | (a) | Use the binomial theorem to expand $\left(x+\frac{3}{x}\right)^4$, simplifying each term of the exp | eansion.
[4] | | | (b) | The coefficient of x^2 in the expansion of $(1+2x)^n$ is 760. Given that n is a positive integer, find the value of n . | [5] | | | | | Jan 12 | | 82) | Using the binomial theorem, write down and simplify the first four terms in the expansion $(1-2x)^6$ in ascending powers of x. | | | | | | | June 12 | | <u>@</u> | In t | In the binomial expansion of $(a + 4a)^5$, where $a \neq 0$ the coefficient of the term in x^2 is twice the coefficient of the term in x . Find the value of a . | | | | | | 100.54 | :05 5. .v