| 89. | The
dian | circle C has centre A and radius r. The points $P(1, -4)$ and $Q(9, 10)$ are at eithe neter of C. | r end of a | |-----|-------------|--|-------------------------------| | | (a) | (i) Write down the coordinates of A. | | | | | (ii) Show that $r = \sqrt{65}$. | | | | | (iii) Write down the equation of C. | [4] | | | (b) | Verify that the point $R(4, 11)$ lies on C . | [2] | | | (c) | Find <i>QPR</i> . | [3] | | | | | June 2008 | | 90. | The | circle C_1 has centre A and equation | | | | | $x^2 + y^2 + 4x - 2y - 20 = 0.$ | į | | | (a) | Find the coordinates of A and the radius of C_1 . | [3] | | | (b) | The line L has equation $y = -x + 6$. Find the coordinates of the points of intersect and C_1 . | ction of L
[4] | | | (c) | The circle C_2 has centre (10, 6) and radius r . Given that C_1 and C_2 touch externally value of r . | , find the
[3] | | | | | Jan 2009 | | 91. | The c | circle C, has centre A and equation | | | | | $x^2 + y^2 - 6x + 2y - 15 = 0.$ | | | | <i>(a)</i> | Find the coordinates of A and the radius of C_1 . | [3] | | | (b) | The point P has coordinates (7, 2) and lies on C_1 . Find the equation of the tangent to | o C ₁ at P.
[4] | | | (c) | The circle C_2 has centre $B(11, 14)$ and radius 8. A point Q lies on C_1 and a point C_2 Find the shortest possible length of the line QR . | R lies on
[3] | | | | | June 2009 | | 92. | The c | circle C has centre A and equation | | | | | $x^2 + y^2 + 4x - 8y + 10 = 0.$ | 1 | | | (a) | Find the coordinates of A and the radius of C. | [3] | | | (b) | The line L has equation | | | | | x-3y+4=0. | | | | | Show that L is a tangent to the circle C . | [4] | | | | | Jan 2010 | | | | | |