89.	The dian	circle C has centre A and radius r. The points $P(1, -4)$ and $Q(9, 10)$ are at eithe neter of C.	r end of a
	(a)	(i) Write down the coordinates of A.	
		(ii) Show that $r = \sqrt{65}$.	
		(iii) Write down the equation of C.	[4]
	(b)	Verify that the point $R(4, 11)$ lies on C .	[2]
	(c)	Find <i>QPR</i> .	[3]
			June 2008
90.	The	circle C_1 has centre A and equation	
		$x^2 + y^2 + 4x - 2y - 20 = 0.$	į
	(a)	Find the coordinates of A and the radius of C_1 .	[3]
	(b)	The line L has equation $y = -x + 6$. Find the coordinates of the points of intersect and C_1 .	ction of L [4]
	(c)	The circle C_2 has centre (10, 6) and radius r . Given that C_1 and C_2 touch externally value of r .	, find the [3]
			Jan 2009
91.	The c	circle C, has centre A and equation	
		$x^2 + y^2 - 6x + 2y - 15 = 0.$	
	<i>(a)</i>	Find the coordinates of A and the radius of C_1 .	[3]
	(b)	The point P has coordinates (7, 2) and lies on C_1 . Find the equation of the tangent to	o C ₁ at P. [4]
	(c)	The circle C_2 has centre $B(11, 14)$ and radius 8. A point Q lies on C_1 and a point C_2 Find the shortest possible length of the line QR .	R lies on [3]
			June 2009
92.	The c	circle C has centre A and equation	
		$x^2 + y^2 + 4x - 8y + 10 = 0.$	1
	(a)	Find the coordinates of A and the radius of C.	[3]
	(b)	The line L has equation	
		x-3y+4=0.	
		Show that L is a tangent to the circle C .	[4]
			Jan 2010