| (12) | The points A, B, C, D have coordinates (-5, 14), (1, 2), (5, 4), (3, 8) respectively. | | | | | |------|--|------------|--|-------------------------------|---| | | (a) | (i) | Show that AB and CD are parallel. | | | | | | (ii) | Find the equation of AB . | | | | | | (iii) | The line L passes through the point D and is perpendicular to $\mathcal{A}\mathcal{B}$. Show that equation | L has | | | | | | x - 2y + 13 = 0. | [8] | | | | (b) | The | The lines L and AB intersect at the point E . | | | | | | (i) | Find the coordinates of E . | | | | | | (ii) | Calculate the length of EF , where F denotes the mid-point of AB . | [6]
an 12 | - | | (13) | The points A , B , C are such that A , B have coordinates $(-4, 7)$, $(2, -1)$ respectively and C is the mid-point of AB . The line L is the perpendicular bisector of AB . | | | | | | | (a) | Find | I the gradient of AB . | [2] | | | | <i>(b)</i> | Find | the coordinates of C. | [2] | | | | (c) | Show | w that the equation of L is | | | | | | | 3x - 4y + 15 = 0. | [4] | | | | (d) | The | point D lies on L and has coordinates $(7, k)$. | | | | | | (i) | Show that $k = 9$. | | | | | | (ii) | Find the length of CA and the length of DA . | | | | ~ | | (iii) | Hence show that the value of $\sin \widehat{ADC}$ may be expressed in the form $\frac{1}{\sqrt{a}}$, we is an integer whose value is to be found. | here <i>a</i>
[7]
ne 12 | | | (14) | The points A and B have coordinates $(2, -3)$ and $(4, 1)$ respectively.
The line L has equation $x + 2y - 11 = 0$. | | | | | | | (a) | Find | the equation of AB and simplify your answer. | [5] | | | | (b) Show that AB and L are perpendicular. | | [3] | | | | | (c) | The | lines AB and L intersect at the point C . Show that C has coordinates (5, 3). | [2] | Ī | | | (d) | | the lengths of AB and AC . Hence find the value of the constant k such that $k + kAC$, giving your answer in its simplest form. | [4] | | -j