<u>(</u> 4)	Di C.G.	evential Eguations	1
	74		
·· · · · · · · · · · · · · · · · · · ·	13.5	Jane 2002	• •
:: 7 	. The decre	value $\pounds V$ of a car is to be modelled as a continuous variable. At time t years, the rate of ease of V is proportional to the value of V .	
	(a)	Write down the differential equation satisfied by V . [1]	
	(b)	Given that $V = 12000$ when $t = 0$, show that	
		$V = 12000 e^{-at}$	
		where a is a positive constant. [5]	
	(c)	After five years, the value of the car is £5400. Find the value of a, correct to three decimal places.	
	P3 Ju	nue 2003	(** *)
4	1. Give	en that $y = 0$ when $x = 0$, solve the differential equation	· · · · ·
•		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x+1+\sin x}{\cos y} \tag{6}$	
ļ.			ļ_ <u>`</u>
The same		hne 2004	· · · · · · · · · · · · · · ·
8.	The s of N i	size N of a population is to be modelled as a continuous variable. At time t , the rate of increase is directly proportional to the value of N .	
	(a)	Write down the differential equation that is satisfied by N . [1]	9
	<i>(b)</i>	Given that $N = 100$ when $t = 0$, show that	
		$N=100e^{kt},$	
. ,		where k is a positive constant. [5]	
¢	² 4 J	Ture 2005	
8 .	The si	size P of a population of bacteria at time t days is to be modelled as a continuous variable that the rate of increase of P is directly proportional to P .	
•	(a)	Write down a differential equation that is satisfied by P. [1]	
	(b)	Given that the initial size of the population is P_0 , show that $P = P_0 e^{kt}$, where k is a positive constant. [5]	
	(c)	Two days after the start, the population is $1\cdot 2P_0$. Find when the population will be $2P_0$.	
		[4]	
	nter e se	en er en errenneg er en en en en en errennegen av der det det en eine en eine en eine en eine en en en en en e De en	
.		······································	