200	8.	The si	ize P of a population of bacteria at time t days is to be modelled as a continuous value the rate of increase of P is directly proportional to P .	riable	
	٠	(<i>a</i>)	Write down a differential equation that is satisfied by P .	[1]	f
		<i>(b)</i>	Given that the initial size of the population is P_0 , show that $P=P_0$ etc, where positive constant.	k is a [5] ·	
,		(c)	Two days after the start, the population is $1.2P_0$. Find when the population will be 2	2P _o . [4]	
.006	8.	Wate	er leaks from a hole at the bottom of a large water tank. The depth of the water nutes is x metres. The rate of decrease of x is directly proportional to \sqrt{x} .	at time	
,		(a)	Write down a differential equation that is satisfied by x .	[1]	
, ·		(b)	Given that the depth of water in the tank when $t = 0$ is 9 metres, show that		ſ
-			$kt = 6 - 2\sqrt{x}$.*	
$\langle \hat{\cdot} \rangle$			where k is a positive constant.	[4]	
		(c) .	Given that the depth of water in the tank is 4 metres when $t = 20$, find the time taker tank to empty.	n for the [3]	
2007	8.	The price $\pounds P$ of an item at time t years is to be modelled as a continuous variable such that the rate of increase of P is directly proportional to P .			
3		(a)	Write down a differential equation that is satisfied by P.	[1]	f.
		<i>(b)</i>	Given that the price of the item at $t = 0$ is £50, show that $P = 50e^{kt}$, where k is a p constant.	oositive [5]	l _a
		(c)	After seven years the price of the item is £65. Find the price of the item after sixteen y	years. [4]	
<u>م</u> د			-	-	<u>·</u>
4 ₀),	7.	A n at ti	eglected large lawn contains a certain type of weed. The area of the lawn covered by me t years is $W \text{m}^2$. The rate of increase of W is directly proportional to W .	the weed	f
	. 1	(a)	Write down a differential equation that is satisfied by W.	[1]	
		(b)	The area of the lawn covered by the weed initially is 0.10 m^2 and one year later covered is 2.01 m^2 . Find an expression for W in terms of t.	the area [6]	
2009	7	. The	e value of an electronic component may be modelled as a continuous variable. The value of an electronic component may be modelled as a continuous variable. The value of an electronic proportional to P^3 .	lue of the	
		(a,	Write down a differential equation that is satisfied by P.	[1]	f
7		(b		E.	Ĺ
7			$\frac{1}{P^2} = \frac{1}{400} + At,$ where A is a positive constant.	[5]	
		(c	Given that the value of the component when $t = 1$ is £10, find the time when the value	due is £5.	

[4]