31. (a) A geometric series has first term a and common ratio r. Write down the nth term and prove that the sum of the first n terms is given by

$$S_n = \frac{\alpha(1-r^n)}{1-r}.$$

Given that |r| < 1, write down the sum to infinity of the series.

[5]

- (b) The sum of the first term and the second term of a geometric series is equal to twice the sum of the second term and the third term of the series.
 - (i) Given that the common ratio of the series is positive, find the value of the common ratio.
 - (ii) The sum to infinity of the series is 12. Find, correct to two decimal places, the sum of the first eight terms of the series.

Jan 2007

32. (a) A geometric series has first term a and common ratio r. Prove that the sum of the first n terms is given by.

$$S_n = \frac{a(1-r^n)}{1-r} .$$

Given that |r| < 1, write down the sum to infinity of the series.

[4]

- (b) The sum to infinity of a geometric series with first term a and common ratio r is 10. The sum to infinity of a second geometric series with first term a and common ratio 2r is 15.
 - (i) Find the value of r.

[4]

(ii) Find the sum of the first four terms of the first-series, giving your answer correct to two decimal places.

June 2007

- 33. A geometric series has first term a and common ratio r. The fifth term of the geometric series is 135 and the eighth term is 5.
 - (a) Show that $r = \frac{1}{3}$ and find the value a.

[5]

(b) Find the sum to infinity of the series.

[2]

Jan 2008

34. A geometric series has first term a and common ratio r. The sum of the first two terms of the geometric series is 7.2. The sum to infinity of the series is 20. Given that r is positive, find the values of r and a.

June 2008