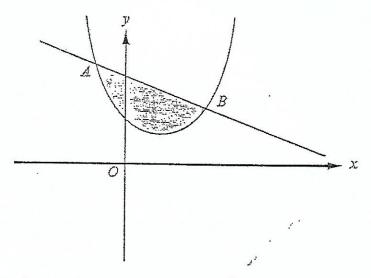
121. The region R is bounded by the curve $y = 3x + \frac{1}{5}x^3$, the x-axis and the lines x = 1, x = 3. Find the area of R.

June 2010

122. (6)

The diagram shows a sketch of the curve $y = 25 - x^2$ and the line y = -2x + 17. The line and the curve intersect at the points A and B.


(i) Find the coordinates of A and B.

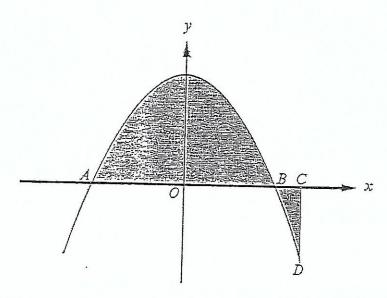
[4]

(ii) Find the area of the shaded region.

[7] Jan 2011

123. (b)

The diagram shows a sketch of the curve $y = x^2 - 4x + 6$ and the line y = -x + 10. The curve and the line intersect at the points A and B.


A c

- (i) Showing your working, find the coordinates of A and B.
- (ii) Find the area of the shaded region.

[II]

June 2011

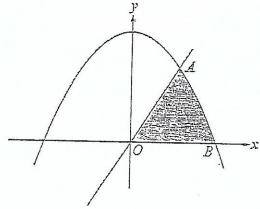
124. (b)

<u> --</u>

The diagram shows a sketch of the curve $y = 4 - x^2$.

The curve intersects the x-axis at the points A and B. The point C has coordinates (3, 0). The point D lies on the curve and CD is parallel to the y-axis.

(i) Showing your working, find the x-coordinates of the points A and B.


[2]

(ii) Find the total area of the shaded regions.

[6]

Jan 2012

125. (6)

The diagram shows a sketch of the curve $y = 36 - x^2$ and the line y = 5x. The curve and the line intersect at the point A in the first quadrant and the curve intersects the positive x-axis at the point B.

- (i) Showing your working, find the coordinates of A and the coordinates of B.
- (ii) Find the area of the shaded region.

[10]

June 2012