| · | (C4) Proof | | |---------------------------------------|---|----------| | | P3 Jane 2001 | | |
9 . | Given that $2n^3 + 3n$ is odd, where n is an integer, use proof by contradiction to show | 41 as i- | | | odd. | [4] | | | P3 Jane 2002 | | | | Complete the following proof by contradiction to show that $\sqrt{5}$ is irrational. | . | | | Assuming that $\sqrt{5}$ is rational, let $\sqrt{5} = \frac{a}{b}$, | ·
 | | | where a and b are integers that have no common factors.
Then $5b^2 = a^2 \Rightarrow 5$ is a factor of a^2 . | [5] | | · · · · · · · · · · · · · · · · · · · | P3 June 2003 | | | · | Complete the following proof by contradiction to show that $x + \frac{9}{x} \ge 6$ when x is real and possassume that $x + \frac{9}{x} < 6$. Since $x > 0$, $x^2 + 9 < 6x$. | itive. | | 10.
 | Complete the following proof by contradiction to show that $\sqrt{2}$ is irrational. Assuming that $\sqrt{2}$ is rational, let $\sqrt{2} = \frac{a}{b}$, where a and b are integers that have no comfactor. | mon | |
 | Squaring both sides, we have $2 = \frac{a^2}{b^2}$. | | | | $\therefore 2b^2 = a^2$ | | | | which implies 2 is a factor of a^2 . Then 2 is a factor of a . C4 June 2005 | [4] | | 10. | Complete the following proof by contradiction to show that $x + \frac{25}{x} \ge 10$ when x is repositive. | al and | | | Assume that $x + \frac{25}{x} < 10$, when x is real and positive. | | | Personal dates | Since x is positive, multiplication of both sides of the inequality by x gives $x^2 + 25 < 10x$. | [4] |