·	(C4) Proof	
	P3 Jane 2001	
 9 .	Given that $2n^3 + 3n$ is odd, where n is an integer, use proof by contradiction to show	41 as i-
	odd.	[4]
	P3 Jane 2002	
	Complete the following proof by contradiction to show that $\sqrt{5}$ is irrational.	.
	Assuming that $\sqrt{5}$ is rational, let $\sqrt{5} = \frac{a}{b}$,	·
	where a and b are integers that have no common factors. Then $5b^2 = a^2 \Rightarrow 5$ is a factor of a^2 .	[5]
· · · · · · · · · · · · · · · · · · ·	P3 June 2003	
·	Complete the following proof by contradiction to show that $x + \frac{9}{x} \ge 6$ when x is real and possassume that $x + \frac{9}{x} < 6$. Since $x > 0$, $x^2 + 9 < 6x$.	itive.
10. 	Complete the following proof by contradiction to show that $\sqrt{2}$ is irrational. Assuming that $\sqrt{2}$ is rational, let $\sqrt{2} = \frac{a}{b}$, where a and b are integers that have no comfactor.	mon
 	Squaring both sides, we have $2 = \frac{a^2}{b^2}$.	
	$\therefore 2b^2 = a^2$	
	which implies 2 is a factor of a^2 . Then 2 is a factor of a . C4 June 2005	[4]
10.	Complete the following proof by contradiction to show that $x + \frac{25}{x} \ge 10$ when x is repositive.	al and
	Assume that $x + \frac{25}{x} < 10$, when x is real and positive.	
Personal dates	Since x is positive, multiplication of both sides of the inequality by x gives $x^2 + 25 < 10x$.	[4]