· PROOF 10

10. Complete the following proof by contradiction to show that $x + \frac{25}{x} \ge 10$ when x is real and positive.

Assume that $x + \frac{25}{x} < 10$ when x is real and positive.

Since x is positive, multiplication of both sides of the inequality by x gives $x^2 + 25 < 10x$.

[4]

11. Complete the following proof by contradiction to show that $\sqrt{2}$ is irrational.

Assume that $\sqrt{2}$ is rational. Then $\sqrt{2}$ may be written in the form $\frac{a}{b}$, where a and b are positive integers having no common factor.

- $\therefore a^2 = 2b^2.$
- \therefore a^2 has a factor 2. \cdots
- \therefore a has a factor 2 so that a = 2k,

where k is an integer.

[4]

10. Complete the following proof by contradiction to show that, if n is a positive integer and $3n + 2n^3$ is odd, then n is odd.

It is given that $3n + 2n^3$ is odd. Assume that n is even so that n = 2k.

2008 10. Prove by contradiction the following proposition.

When x is real and positive,

$$x \div \frac{49}{x} \ge 14$$
.

The first line of the proof is given below.

Assume that there is a positive and real value of x such that

$$x + \frac{49}{x} < 14 \quad . \tag{4}$$

10. Complete the following proof by contradiction to show that $\sqrt{3}$ is irrational.

Assume that $\sqrt{3}$ is rational. Then $\sqrt{3}$ may be written in the form $\frac{a}{b}$ where a and b are integers having no common factors.

- $\therefore a^2 = 3b^2.$
- \therefore a^2 has a factor 3.
- \therefore a has a factor 3 so that a = 3k, where k is an integer.

[4]