

YEAR 12 AS Mathematics

Question	Maximum Mark	Mark Awarded
1	8	
2	10	
3	^ 7	
4	4.	
5	2	\$_
6	9	
7	4	
8	6	
9	6	
10	14	
11	5	
1		
Total Mark		75

1

Simplify

(a)
$$\frac{3\sqrt{3}+1}{5\sqrt{3}-7}$$

[4]

(b)
$$\left(\sqrt{12} \times \sqrt{24}\right) + \frac{\sqrt{150}}{\sqrt{3}} - \frac{36}{\sqrt{2}}$$
.

[4]

- 2.
- (a) Express $x^2 + 4x 8$ in the form $(x + a)^2 + b$, where a and b are constants whose values are to be found. [2]
- (b) Use an algebraic method to solve the simultaneous equations $y = x^2 + 4x 8$ and y = 2x + 7. [4]
- (c) Draw a sketch illustrating geometrically the results of both part (a) and part (b). [4]

3.

Given that the quadratic equation

$$(k-1)x^2 + 2kx + (7k-4) = 0$$

has no real roots, show that

$$6k^2 - 11k + 4 > 0.$$

Find the range of values of k satisfying this inequality.

[7]

Solve the inequality $2x^2 + 11x + 12 \ge 0$.

[4]

5. (b) Differentiate $9x^{\frac{5}{4}} - \frac{8}{\sqrt[3]{x}}$ with respect to x.

[2]

- 6. The curve C has equation $y = x^2 8x + 14$.
 - (a) The point P has coordinates (6, 2) and lies on the curve C. Find the equation of the normal to C at P. [5]
 - (b) The point Q lies on C and is such that the tangent to C at Q has equation

$$y = 2x + c,$$

where c is a constant. Find the coordinates of Q and the value of c.

[4]

7. (a) Given that $y = -5x^2 - 7x + 13$, find $\frac{dy}{dx}$

[2]

(b) Differentiate $6x^{\frac{3}{4}} + \frac{5}{x^3} - 9$ with respect to x.

[2]

8,

- (a) Given that x 3 is a factor of $px^3 13x^2 19x + 12$, write down an equation satisfied by p. Hence show that p = 6.
- (b) Solve the equation $6x^3 13x^2 19x + 12 = 0$.

[4]

9.

Solve the equation $6x^3 - 13x^2 + 4 = 0$.

[6]

10.

The points A and B have coordinates (6, -2) and (4, 1), respectively. The line L_1 passes through the point B and is perpendicular to AB.

- (a) (i) Find the gradient of AB.
 - (ii) Find the equation of L.

5

- (b) The line L_2 passes through A and has equation x 8y 22 = 0. The lines L_1 and L_2 intersect at the point C.
 - (i) Show that C has coordinates (-2, -3).
 - (ii) Find the coordinates of the mid-point of AC.
 - (iii) Find the area of triangle ABC, simplifying your answer.

[9]

11.

Find the equation of the curve shown below

[5]