Year 13 A Level Mathematics: Pure

Teacher: Mr Lunt

Answer all questions

Question	Maximum	Actual
	Mark	Mark
1 -	7	
2	5	
3	6	
4	5	113-530-50-11
5	3	
6	6	
7	17	
8	4	
9	10	
10	4	
11	9	
12	5	
13	10	
14	6	

Total 97

1. Given that

$$f(x) = \frac{2x^2 + 4}{(x-2)^2(x+4)},$$

(a) express f(x) in partial fractions,

[4]

(b) hence find the value of f'(0).

[3]

2. Find the equation of the normal to the curve

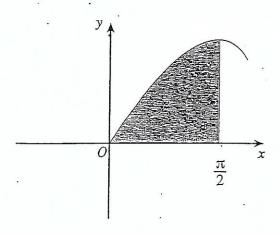
$$2x^3 + 6xy^2 - y^4 = 27$$

at the point (2, 1).

[5]

3. Find all values of θ in the range $0^{\circ} \leq \theta \leq 360^{\circ}$ satisfying

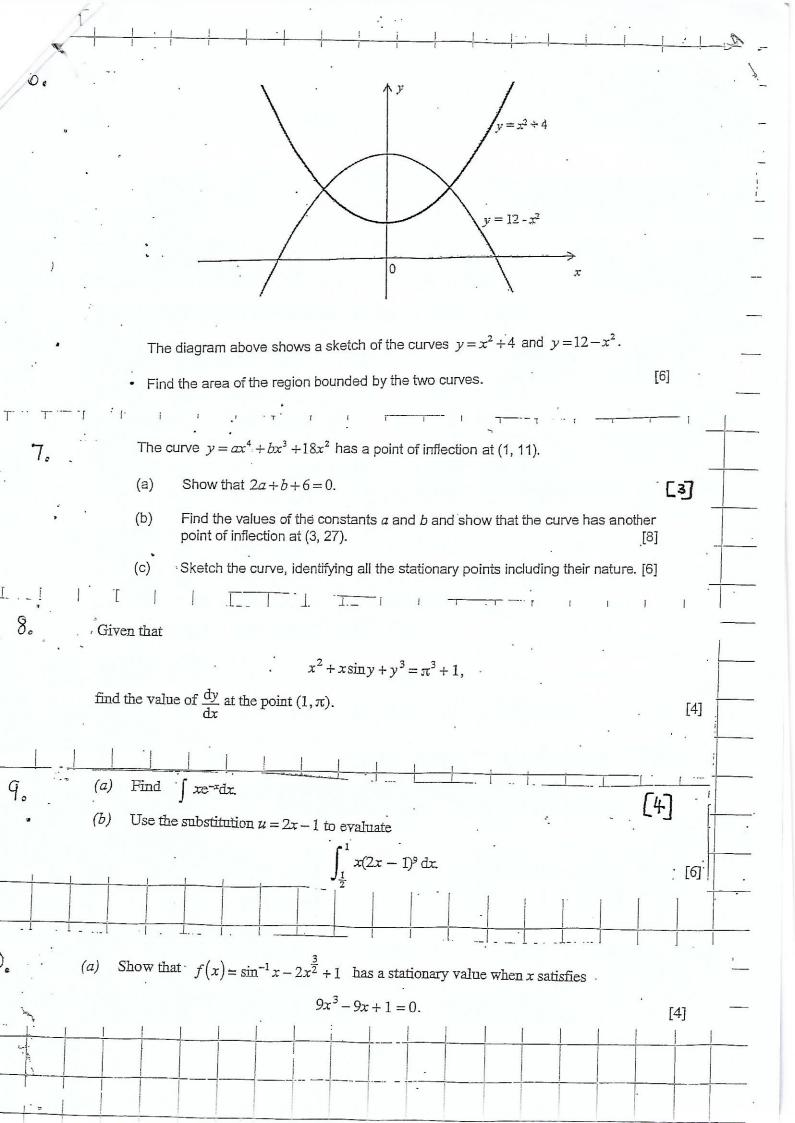
$$2 + 3\cos 2\theta = \cos \theta$$
.


[6]

[2]

- 4. (a) Express $4\sin x + 3\cos x$ in the form $R\sin(x + \alpha)$, where R and α are constants with R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. [3]
 - (b) Hence find the greatest value of

$$\frac{1}{4\sin x + 3\cos x + 7}$$

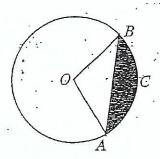

5.

[3]

The diagram shows the shaded region bounded by the curve $y = \sin x$, the x-axis and the line $x = \frac{\pi}{2}$.

Colculate the area shaded

The parametric equations of the curve C are


$$x = \frac{1}{t}, \quad y = t^2.$$

(a) Show that the tangent to C at the point P with parameter p has equation

$$y + 2p^3x - 3p^2 = 0. ag{4}$$

(b) The tangent to C at the point P intersects the x-axis at A and the y-axis at B. Show that PB = 2PA.

The diagram shows a circle of centre O and radius r cm. The radii OA and OB are such that

 $\widehat{AOB} = 0.8$ radians. The length of the minor arc \widehat{ACB} is 4 cm.

(a) Calculate the value of r.

[2]

(b) Calculate the area of the shaded segment.

. [3]

 3_{\circ} (a) Differentiate each of the following with respect to x.

- (i) $\sqrt{5x^2 3x}$
- (ii) $\sin^{-1}7x$
- (iii) $e^{3x} \ln x$

[7]

(b) By first writing $\cot x = \frac{\cos x}{\sin x}$, show that $\frac{d}{dx}(\cot x) = -\csc^2 x$.

[3]

[6]

14. (a) Find

(i)
$$\int \cos\left(\frac{4x+5}{3}\right) dx$$
, (ii) $\int e^{2x+9} dx$, (iii) $\int \frac{3}{(7-2x)^6} dx$.