## DYNAMICS WITH CALCULUS: 2

A vehicle, moving along a straight horizontal road, has velocity v ms<sup>-1</sup> at time t seconds modelled by

$$v = \frac{1}{60}t(60 - t), \qquad 0 \le t \le 60.$$

(a) Write down the times at which the vehicle is stationary.

[1]

(b) Calculate the distance travelled by the vehicle between t = 0 and t = 60. [5]

- Find, in terms of t, an expression for the acceleration of the vehicle at time t seconds. (c)
  - Find the greatest speed of the vehicle. (ii)

[4]

2005 M2

A vehicle travels in a straight line so that its velocity  $v \text{ ms}^{-1}$  at time t s is given by

$$v = \frac{1}{20} (3t^2 + 4t + 5), \quad 0 \le t \le 20.$$

Find the time when the acceleration of the vehicle is 5 ms<sup>-2</sup>.

[4]

Determine the distance travelled by the vehicle from t = 0 to t = 20. (b)

[4]

2004 MZ

A particle moves along a horizontal straight line. At time t s, the velocity of the particle is v ms<sup>-1</sup>, 3. where

$$v=\frac{t^2-4}{3t},$$

$$t > 0$$
.

Find the value of t when the particle is at rest. (a)

[2]

Calculate the distance travelled by the particle between t = 2 and t = 5. Give your answer (b) correct to three significant figures. [7]

4. A particle of mass 4 kg moves along the x-axis, starting, when t = 0, from the point where x = 3. At time ts, its velocity v ms<sup>-1</sup> is given by

$$x - 3$$
. At time  $t$ s, its velocity  $v$ ms<sup>-1</sup> is given by 
$$v = 12t^2 - 7kt + 1$$

2016 M2

JUNE

where k is constant.

When t = 2, the displacement of the particle from the origin is 16 m.

Determine the value of k. (a)

[5]

Calculate the magnitude of the force acting on the particle when t = 5. (b)

[4]