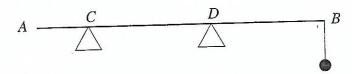


The length of AB is 1.8 m and its mass is 1.5 kg. The masses of the particles at A, D and B are 0.8 kg, 0.5 kg and 0.4 kg respectively.

(a) Find the magnitude of the reaction of the support at C.

[2]


(b) Calculate the distance CD.

06

[4]

3

1. The diagram shows a uniform straight rod AB, of length 3.8 m, resting horizontally in equilibrium on two smooth supports at C and D with an object of mass $2.2 \, \mathrm{kg}$ freely suspended from point B.

The mass of the rod is 4.4 kg, AC = 0.4 m and AD = 2.6 m. Calculate the magnitudes of the reactions at C and D.

3. The diagram shows a uniform plank AB, of length $6.0 \,\mathrm{m}$ and weight $300 \,\mathrm{N}$, resting horizontally on two smooth supports at C and D. The lengths of AC and AD are $0.8 \,\mathrm{m}$ and $4.8 \,\mathrm{m}$ respectively.

When a load of WN is attached at B, the reaction at C has magnitude 75 N.

(a) Find the value of W.

[4]

(b) Find the magnitude of the reaction at D.

[2]

The diagram shows a uniform rod AB, of mass 4 kg and length 1.6 m, with a particle, of mass 0.5 kg, attached at a point C of the rod, where AC = 0.5 m.

The rod is resting horizontally in equilibrium on two smooth supports at points X and Y of the rod, where AX = 0.6 m and AY = 1.2 m.

(a) Calculate the reaction at X and the reaction at Y.

[7]

(b) When an additional particle of mass $M \log is$ attached to the point C, the rod is on the point of turning about X. Calculate the value of M. [4]