| | | 12 | | | | |------------------|----|---|---|---|--| | MI | • | acce
unif | ehicle is initially at rest at point A on a straight line ABCD. It moves from A eleration and reaches B with velocity 18 ms^{-1} after 6 seconds. It moves from acceleration of 0.25 ms^{-2} and 12 s after passing through B it passes that C to D with uniform retardation coming to rest at D 14 s after passing through | om B to C with a rough C . It moves | | | JUN | | (a) | Draw a velocity-time graph for the motion of the vehicle. | [4] | | | 20 | 01 | (b) Find the acceleration of the vehicle when travelling from A to B and its travelling from C to D . | | retardation when [2] | | | | | (c) | Calculate the total distance AD. | [4] | | | | | 7 | | | | | 11
7N
002 | 2. | The track between station A and station B is straight and horizontal. A train starts from rest at station A and accelerates at a constant rate of $4 \mathrm{ms}^{-2}$ until it reaches a speed of $24 \mathrm{ms}^{-1}$. It travels at this constant speed for $100 \mathrm{s}$ before decelerating at a constant rate of $6 \mathrm{ms}^{-2}$ to stop at station B . | | | | | | | (a) | Sketch a v - t graph to illustrate the journey from A to B . | [4] | | | | | (b) | Find the total time for the train to travel from A to B . | [3] | | | | | (c) | Calculate the distance between A and B . | [2] | | | _ | | | | | | | ۸۱ | 3, | it read | in, starting from rest from station A , travels along a straight horizontal track in B , which is 2400 m from A . Initially, the train accelerates at a uniform rate ches a speed of 16 ms ⁻¹ . It then maintains this speed of 16 ms ⁻¹ for T s, beformly to rest in 20 s. | of 0.4 ms ⁻² until | | | UNE
2006 | | (a) | Calculate the time taken for accelerating. | [2] | | | | | (b) | Draw a sketch of the v - t graph for the journey from A to B . | [4] | | | | | (c) | Find the value of T . | [4] | | | | | 1 | | | | | 7
Jan
2004 | | station | moves along a straight horizontal track between two stations. It starts to A and accelerates at a constant rate for $45 \mathrm{s}$ until it reaches a speed of $18 \mathrm{ms}^{-1}$ constant speed of $18 \mathrm{ms}^{-1}$ for 5 minutes before decelerating uniformly to restructes. | . It then travels | | | M(| | (a) S | Sketch a v-t graph to illustrate the journey. | [4] | | | | | (b)] | Find the magnitude of the acceleration of the train, stating your units. | [2] | | | | | (c) | Calculate the distance between A and B . | [3] | | | | | | | | | In a relay race, a sprinter receives the baton 100 m from the finish when his speed is 8.8 ms⁻¹. He then accelerates uniformly for 2 s until he reaches his top speed, which he maintains for the remainder of the race. His time for the 100 m is recorded as 10.6 s. 4 - (a) Draw a sketch of the v-t graph for the sprinter's motion for the last 100 m of the race. [4] - (b) Calculate the sprinter's top speed. [3] - (c) Determine the uniform acceleration of the sprinter. [2] - **b**. A train, travelling along a straight horizontal track, has a steady speed of 18 ms⁻¹ as it passes the point A. Fifteen seconds later, it begins to slow down at a uniform rate for 30 s until its speed is 10 ms⁻¹. The train then increases its speed uniformly for 45 s until it reaches a speed of 20 ms⁻¹ as it passes the point B. - (a) Draw a sketch of the v-t graph for the motion of the train between A and B. [4] - (b) Calculate the acceleration of the train just before it reaches B. [2] - (c) Find the distance from A to B. [4] - A vehicle travels on a straight horizontal road. As it passes a point A at time t = 0, it is moving with a constant velocity of $18\,\mathrm{ms^{-1}}$. It continues travelling at this velocity for 48 seconds. It then decelerates at a constant rate for the next $12\,\mathrm{s}$ until it passes a point B with velocity $3\,\mathrm{ms^{-1}}$. - Sketch a velocity-time graph for the motion of the vehicle between A and B. [2] - (b) Find the magnitude of the deceleration of the vehicle. [2] - (c) Determine the distance between A and B. [3] \$ 8. June 2009 MI The diagram, which is not drawn to scale, is a sketch of the velocity-time graph of a train over a period of 480 s. - (a) Find the acceleration of the train at t = 10 and at t = 420. [3] - (b) Find the velocity of the train at t = 20. [2] - (c) Calculate the distance travelled from t = 0 to t = 480. [4]