[4] [4] (b) (c) Find the value of T. | JUNE
2008 | 9 | A train is travelling along a straight horizontal track. As the train passes point A , its speed is 18 ms^{-1} and immediately after passing point A , it decelerates uniformly for 9 s until its speed is 12 ms^{-1} . The train then accelerates at 0.5 ms^{-2} until it reaches a speed of 22 ms^{-1} . The train maintains the speed of 22 ms^{-1} for the next 31 s at which time it passes the point B . | | | | | |--------------------|----------|--|---|------------------------------|----------------|--| | MI | | (a) | Find the time taken for the acceleration. | [2 | Ĺ | | | | | (b) | Draw a sketch of the velocity-time graph for the journey between A and B . | - [4 | .] | | | | 6. | of a c | s travels on a straight horizontal road. It leaves bus stop A starting from rest and constant rate for 10s until it reaches a speed of $20\mathrm{ms^{-1}}$. It then continues to tant speed and, T seconds after it stops accelerating, it passes a point B . | daccelerate
travel at thi | S | | | JUNE | | (a) | Sketch a velocity-time graph for the motion of the bus between A and B. | [3 | 3] | | | 2015
MI | | (b) | Find the acceleration of the bus. | [2 | 2] | | | | | (c) | Determine an expression for the distance between A and B in terms of T. | [3 | 3] | | | | | (d) | A car leaves A 5 seconds after the bus has left. It starts from rest and constant acceleration of magnitude $2 \mathrm{ms}^{-2}$. Given that the car overtakes t point B , find the distance between A and B . | ne bus at ti | a
ne
[5] | | | 7.
AY | be
un | A skydiver drops from rest from a hot air balloon and falls vertically under gravity for 5s before his parachute opens. After the parachute has opened, his speed of descent reduces with uniform retardation for a further 10s until his speed is 4ms ⁻¹ . He then continues to travel at a constant speed of 4ms ⁻¹ until he reaches the ground 2 minutes after he left the hot air balloon. | | | | | | 2012 | (a |) C | alculate the speed of the skydiver just before his parachute opens. | [3] | | | | MI | (b) |) D | raw a sketch of the velocity-time graph for the skydiver's descent. | [4] | | | | | (c |) D | etermine the height of the skydiver above the ground when he drops from alloon. | the hot air [3] | | | | JUNE
2013
MI | 8. | A vehicle moves along a straight horizontal road. At time $t = 0$ s, the vehicle passes a point A and is moving with a speed of $20 \mathrm{ms^{-1}}$. It continues with this constant speed of $20 \mathrm{ms^{-1}}$ for 8s. The vehicle then slows down with uniform deceleration for 10 s so that at time $t = 18$ s, the speed of the vehicle is $6 \mathrm{ms^{-1}}$. This speed is maintained until the vehicle reaches the point B at time $t = 40$ s. | | | | | | | | (a) | Sketch a velocity-time graph for the motion of the vehicle between A and B . | [3] | | | | | | (b) | Find the magnitude of the deceleration between $t = 8$ and $t = 18$. | [3] | | | | | | (c) | Calculate the distance AB . | [3] | | | | | | | | | | |