0 1

Given that a, b are integers, simplify the following. Show all your working.

a) $\frac{2\sqrt{3} + a}{\sqrt{3} - 1}$

[3]

b) · $\frac{2\sqrt{6b^2}}{\sqrt{2}} - \sqrt{27} + \sqrt{192}$

[3]

- Find all the values of k for which the equation $x^2 + 2kx + 9k = -4x$ has two distinct real roots.
- 0 3

Use an **algebraic method** to solve the equation $12x^3 - 29x^2 + 7x + 6 = 0$. Show all your working.

[6]

- The line L_1 passes through the points A(-1, 3) and B(2, 9). The line L_2 has equation 2y + x = 25 and intersects L_1 at the point C. L_2 also intersects the x-axis at the point D.
 - a) Show that the equation of the line L_1 is y = 2x + 5.

[3]

- b) i) Find the coordinates of the point D.
 - ii) Show that L_1 and L_2 are perpendicular.
 - iii) Determine the coordinates of C.

[5]

c) Find the length of CD.

[2]

d) Calculate the angle ADB. Give your answer in degrees, correct to one decimal place.

- The circle C has centre A and radius r. The points P(1, -4) and Q(9, 10) are at either end of a diameter of C.
 - (a) (i) Write down the coordinates of A.
 - (ii) Show that $r = \sqrt{65}$.
 - (iii) Write down the equation of C. [4]
 - (b) Verify that the point R(4, 11) lies on C. [2]
 - (c) Find \widehat{QPR} . [3]
 - $\mathbf{6}$ Differentiate each of the following with respect to x.

(a)
$$2x^5 + \frac{24}{x^2} - 3\sqrt{x}$$
 [3]

- (b) $x^2(3x+1)$ [2]
- (a) Express $x^2 + 4x + 9$ in the form $(x + a)^2 + b$, where the values of a and b are to be determined.

 Deduce the maximum value of

$$\frac{1}{x^2 + 4x + 9} \ . \tag{4}$$