1.	Given that	f(x) =	$x^2 + x + 13$,
			$(x+2)^2(x-3)$	

express f(x) in terms of partial fractions, (a)

[4]

(b) evaluate

$$\int_6^7 f(x) \mathrm{d}x,$$

giving your answer correct to three decimal places.

[3]

Find the equation of the normal to the curve

$$x^4 - 2x^2y + y^2 = 4$$

at the point (1, 3).

[5]

Differentiate each of the following with respect to x, simplifying your answer wherever 3. possible.

(a)
$$(7-9x^2)^5$$

(b)
$$\tan^{-1}6x$$

[2], [2]

(c)
$$e^{4x} \tan 2x$$

(d)
$$\frac{3 + \sin x}{2 + \cos x}$$

[3], [3]

(a) Find

(i)
$$\int \cos\left(3x + \frac{\pi}{2}\right) dx$$
, (ii) $\int e^{3-4x} dx$,

(ii)
$$\int e^{3-4x} dx$$

(iii)
$$\int \frac{7}{8x+5} \, \mathrm{d}x.$$

[6]

Evaluate $\int_{1}^{2} \frac{9}{(2x-1)^4} dx.$

[4]

The size N of the population of a small island may be modelled as a continuous variable. At time t, the rate of increase of N is directly proportional to the value of N.

(a) Write down the differential equation that is satisfied by N.

[1]

Show that $N = Ae^{kt}$, where A and k are constants. (b)

[3]

Given that N = 100 when t = 2 and that N = 160 when t = 12, (c)

show that k = 0.047, correct to three decimal places,

find the size of the population when t = 20. (ii)

[7] .

b, (a) Find $\int xe^{-2x} dx$.

[4]

(b) Use the substitution $u = 1 + 3 \ln x$ to evaluate

$$\int_1^e \frac{1}{x(1+3\ln x)} \mathrm{d}x.$$

· Give your answer correct to four decimal places.

[4]

Water is leaking from a hole at the bottom of a large tank. The volume of the water in the tank at time t hours is Vm³. The rate of decrease of V is directly proportional to V³.

(a) Write down a differential equation satisfied by V.

[1]

(b) Given that V = 60 when t = 0, show that

$$V^2 = \frac{3600}{at+1},$$

where a is a constant.

[4]

(c) When t = 2, the volume of the water in the tank is $50 \,\mathrm{m}^3$. Find the value of t when the volume of the water in the tank is $27 \,\mathrm{m}^3$. Give your answer correct to one decimal place.

4